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Effective viscosity in a Lévy-walk model for turbulent channel flow
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We show how in the Lévy-walk model for turbulent channel flow one can measure an effective viscosi-
ty in a two-dimensional lattice-gas implementation. We study the dependence of effective viscosity on
the exponent characterizing the distribution of distances over which momentum is exchanged and on

system size.

PACS number(s): 51.10.+vy, 47.27.—1i, 47.60. +1i

INTRODUCTION

Lévy walks were proposed for a description of
enhanced diffusion in developed turbulence [1] and more
recently discussed in the context of “strange” kinetics of
chaotic Hamiltonian systems [2]. What characterizes
Lévy walks is a distribution of step sizes which decays
algebraically for long distances and a time associated
with each step, varying with distance.

In Refs. [3] and [4] that basic idea was implemented for
the type of hexagonal lattice gas [5] which, upon coarse
graining, has been shown to lead to a description of fluid
flow. The flow studied was turbulent channel flow in two
dimensions, and both average velocity profile and Rey-
nolds stresses were described and discussed.

The implementation of Lévy walks in a lattice gas is
similar to a closure approximation for the Navier-Stokes
equation of turbulent flows. The simplest closure approxi-
mation amounts to replacing in the equation for the aver-
age velocity the molecular kinematic viscosity by an
effective one. Now, for turbulent channel flow, this
effective viscosity is proportional to the product of the
characteristic velocity and Prandtl’s mixing length. The
mixing length itself refers to momentum exchanges, as
does the Lévy-walk implementation at the lattice-gas lev-
el [3]. The question is whether in the latter approach an
effective viscosity can be defined and similarly related to
the average length of Lévy walks. In answer, we here
propose a method to measure an effective viscosity and
study its relation to the average length of Lévy walks.
The method consists in measuring the decay of average
velocity of some initial flow while implementing the
Lévy-walk exchanges all during the decay. It turns out
that the flow decays exponentially with a decay constant
which we relate to an effective viscosity. As it should,
this effective viscosity, which is larger than the molecular
one, decreases when the average distance over which ex-
changes take place gets smaller.

As in the study of driven channel flow, we realize the
Lévy walk in the two-dimensional 6-bit lattice gas with
energy and momentum conserving collision rules [3,5] by
exchanging the populations of sites separated by distance
/, perpendicular to the mean flow direction. [ is drawn
with a probability
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where A is a normalization constant. Moreover, the
number of exchanges depends linearly on I, such that
there are fewer exchanges the greater the distance [3].
The exponent « is the main parameter in our study [3].
The exchanges have the effect of flattening the velocity
profile and enhancing the transport of momentum to the
walls of the channel, thus increasing the viscosity of the
fluid.

For the simulations we generate a channel filled with
lattice-gas fluid with a Poiseuille velocity profile, with
periodic boundary conditions connecting the open ends,
and with bounce-back boundary conditions defining the
channel walls. The algorithm is implemented using mul-
tispin coding for system sizes of 250 X200 and 250X 512.

RESULTS

Starting from an initial velocity field pointing along
one of the sides of the rectangular system, we measure
the decay of the velocity averaged over the whole system.
Results do not depend on whether in the initial flow a
Lévy walk is implemented or whether it is laminar. In
the latter case the exchanges flatten the profile in a time
short compared to the total decay time, and from then
one the profile decays uniformly. What is crucial is that
the Lévy-walk exchanges continue while the flow velocity
is decaying. Since we find that the decay is exponential in
time (Fig. 1), we extract from the decay constant 7 an
effective viscosity v,q related to it by v =L?2 /772, where
L is the dimension of the system transverse to the initial
flow and the factor of 7 is present because of the analo-
gous formula in the laminar case.

Our principal result is the curve shown in Fig. 2 for the
effective viscosity as a function of a. This viscosity is a
factor of 2.5 larger than the molecular one at small a for
a system size L =200. v, decreases as a increases, be-
cause then the exchange of momenta takes place over
smaller and smaller distances [cf. Eq. (1)]. When «a gets
too large the exchanges are over such short distances that
no significant momentum exchange takes place. As a re-
sult v 4 tends towards the molecular viscosity. In Fig. 2
we also show the behavior of the mean exchange length 7
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FIG. 1. Plot of decaying velocity as a function of time. The
logarithm of the velocity is plotted. The figure corresponds to
L=512and a=1.1.

with a. The behavior is similar to that of v, suggesting
a relation

Veg=0* ()

with v the effective viscosity, v* a quantity with the di-

mension of velocity, and 7 the mean exchange length.
(The mean length is not sharply defined because fluctua-
tions are large due to the slow tapering of the corre-
sponding probability distribution.) Equation (2) expresses
a bulk relationship since it is obtained from averaging the
flow through the whole system.

The value of v* depends on a and somewhat on L. At
low a, where the channel because of long-distance
momentum exchanges is the “most turbulent,” values are
0.026 and 0.030 at, respectively, a=1.1 and 1.3 for
L =200 and 0.033 at a=1.1 for L =512. These values of
v* are remarkably close to that obtained from the aver-
age velocity profile in driven turbulent channel flow for
which the characteristic velocity was determined to be
0.02 [3]. The relationship between v, and v* is an ele-
ment of consistency which is included in the usual clo-
sure approximation for the Navier-Stokes equation [6].

The mean [ increases with the size of the system,
asymptotically as /~L?~% The effective viscosity in-
creases correspondingly, exactly as [ if one neglects the
small system size dependence of v* discussed in the
preceding paragraph. We have checked this from our
numerical results. The dependence on L is expected since
the viscosity increase in turbulent channel flow is due to
momentum exchanges over large distances, with larger
momenta conveyed from far away to the vicinity of the
wall where they decay.

DISCUSSION

We have proposed a “trick” to measure the effective
viscosity of a lattice gas made turbulent through Lévy

FIG. 2. Plot of effective viscosity and mixing length as a
function of a. Symbol sizes indicate error margins. Note that
the viscosity for laminar flow is 0.186. The figure corresponds
to L =200.

walks for the case of channel flow. It is a function of the
exponent which determines the distribution of distances
over which Lévy walks occur and also of system size. Its
behavior is sensible, as it is proportional to the average
length of the walks, with a proportionality constant close
in value to the characteristic velocity of sustained tur-
bulent channel flow. The analogy with the usual closure
approximation mentioned in the Introduction is thus es-
tablished. A final remark is in order: The trick for
measuring v.; consists in maintaining momentum ex-
changes at the same level, with the same characteristic
exponent a during velocity decay. This way of proceed-
ing is not relevant to a description of the actual physics
of a decaying turbulent channel flow, for which the Lévy
walk itself would presumably have to evolve with the
changing characteristic velocity of the logarithmic profile
[3]. In the decay itself, as investigated here, the flat ve-
locity profile decays exponentially, uniformly in space.
The question may be asked whether if one had a realistic
description of the decaying turbulent flow, behavior other
than exponential would emerge. We have implemented a
number of simple modifications of the basic Lévy-walk al-
gorithm in order to model the decay more realistically,
such as making exchanges depend not only on distance,
but also on the values of momenta involved, without ever
finding behavior other than exponential for the decay of
bulk velocity. There is of course no reason to expect that
the power-law decays of isotropic turbulence for velocity
or velocity correlations [7], for which Loitsyanskii’s law
appears, is of any relevance to turbulent channel decay.
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